Path Decompositions for Real Levy Processes
نویسنده
چکیده
– Let X be a real Lévy process and let X↑ be the process conditioned to stay positive. We assume that 0 is regular for (−∞,0) and (0,+∞) with respect to X. Using elementary excursion theory arguments, we provide a simple probabilistic description of the reversed paths of X and X↑ at their first hitting time of (x,+∞) and last passage time of (−∞, x], on a fixed time interval [0, t], for a positive level x. From these reversion formulas, we derive an extension to general Lévy processes of Williams’ decomposition theorems, Bismut’s decomposition of the excursion above the infimum and also several relations involving the reversed excursion under the maximum. 2003 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Soit X un processus de Lévy et X↑ le même processus conditionné à rester positif. On suppose que 0 est régulier pour (−∞,0) et (0,+∞) par rapport à X. Par des arguments simples de théorie des excursions, nous décomposons la loi des trajectoires de X et X↑ retournées aux temps d’entrée de (x,+∞) et de sortie de (−∞, x]. De ces formules de reversion, on déduit une extension au cas des processus de Lévy généraux, des théorèmes de décomposition de Williams, du théorème de décomposition de Bismut de l’excursion au dessus du minimum, ainsi que plusieurs relations faisant intervenir l’excursion sous le maximum retournée. 2003 Éditions scientifiques et médicales Elsevier SAS
منابع مشابه
A weak approximation for the Extrema's distributions of Levy processes
Suppose that $X_{t}$ is a one-dimensional and real-valued L'evy process started from $X_0=0$, which ({bf 1}) its nonnegative jumps measure $nu$ satisfying $int_{Bbb R}min{1,x^2}nu(dx)
متن کاملLevy Measure Decompositions for the Beta and Gamma Processes
We develop new representations for the Lévy measures of the beta and gamma processes. These representations are manifested in terms of an infinite sum of well-behaved (proper) beta and gamma distributions. Further, we demonstrate how these infinite sums may be truncated in practice, and explicitly characterize truncation errors. We also perform an analysis of the characteristics of posterior di...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملEnlargements of Filtrations and Path Decompositions at Non Stopping Times
Azéma associated with an honest time L the supermartingale $Z_{t}^{L}=\mathbb{P}[L>t|\mathcal{F}_{t}]$ and established some of its important properties. This supermartingale plays a central role in the general theory of stochastic processes and in particular in the theory of progressive enlargements of filtrations. In this paper, we shall give an additive characterization for these supermarting...
متن کامل